GaAs Solar Cells on Nanopatterned Si Substrates
نویسندگان
چکیده
منابع مشابه
Self-Assembled Local Artificial Substrates of GaAs on Si Substrate
We propose a self-assembling procedure for the fabrication of GaAs islands by Droplet Epitaxy on silicon substrate. Controlling substrate temperature and amount of supplied gallium is possible to tune the base size of the islands from 70 up to 250 nm and the density from 10(7) to 10(9) cm(-2). The islands show a standard deviation of base size distribution below 10% and their shape evolves chan...
متن کاملNanoepitaxy of GaAs on a Si(001) substrate using a round-hole nanopatterned SiO2 mask.
GaAs is grown by metal-organic vapor-phase epitaxy on a 55 nm round-hole patterned Si substrate with SiO(2) as a mask. The threading dislocations, which are stacked on the lowest energy facet plane, move along the SiO(2) walls, reducing the number of dislocations. The etching pit density of GaAs on the 55 nm round-hole patterned Si substrate is about 3.3 × 10(5) cm(-2). Compared with the full w...
متن کاملTowards InAs/InGaAs/GaAs Quantum Dot Solar Cells Directly Grown on Si Substrate
This paper reports on an initial assessment of the direct growth of In(Ga)As/GaAs quantum dots (QDs) solar cells on nanostructured surface Si substrate by molecular beam epitaxy (MBE). The effect of inserting 40 InAs/InGaAs/GaAs QDs layers in the intrinsic region of the heterojunction pin-GaAs/n⁺-Si was evaluated using photocurrent spectroscopy in comparison with pin-GaAs/n⁺-Si and pin-GaAs/GaA...
متن کاملHeterojunction Diodes and Solar Cells Fabricated by Sputtering of GaAs on Single Crystalline Si
This work reports fabrication details of heterojunction diodes and solar cells obtained by sputter deposition of amorphous GaAs on p-doped single crystalline Si. The effects of two additional process steps were investigated: A hydrofluoric acid (HF) etching treatment of the Si substrate prior to the GaAs sputter deposition and a subsequent annealing treatment of the complete layered system. A t...
متن کاملTandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition.
Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Photovoltaics
سال: 2018
ISSN: 2156-3381,2156-3403
DOI: 10.1109/jphotov.2018.2871423